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Spectrum formula of the synchrotron radiation from a quasiperiodic undulator
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Recently, two of the present authors [S. Hashimoto and S. Sasaki, Nucl. Instrum. Methods 361,
611 (1995)] introduced the concept of a class of undulators, a quasiperiodic array of magnet poles,
to discriminate the rational higher harmonics of radiation that are harmful in some synchrotron
experiments. In this paper details of structural properties of radiation from a quasiperiodic undulator
are developed. The analytic expression for the spectrum enables a clear understanding of the
radiation from the quasiperiodic undulator with irrationally factored energies as to (i) peak positions

in spectrum and (ii) peak intensities.

PACS number(s): 41.60.Ap

I. INTRODUCTION

Ordinary undulators consist of a periodic array of mag-
net poles of alternating polarity. The radiation emissions
in each magnet pole interfere with each other, producing
enhanced emission at a fundamental frequency and its
harmonics. Since a mixture of the harmonics degrades
the quality of data in many experiments, the higher har-
monics are required to be eliminated.

The higher harmonics of radiation are usually removed
by using a total reflection mirror that reflects light below
the critical energy for a given grazing angle. The other
way to remove the higher harmonics is to detune a double
crystal monochromator, taking advantage of the wider
Darwin width of the lower harmonic. In the high-energy
region of x rays around 30 keV or above, however, it is
practically difficult to select a specific harmonic radiation
exclusively because of a very small critical angle of the
total reflection or a very narrow Darwin width.

Hashimoto and Sasaki proposed an undulator, which
comprises a quasiperiodic array of magnet poles [1,2]
called the “quasiperiodic undulator” (hereafter, referred
to as the QPU). Since no rational harmonics but irra-
tional ones are contained in the radiation of the QPU,
the light passed through a monochromator includes no
contamination of higher harmonics. That is, we are able
to obtain a completely monochromatic light by the com-
bination of a QPU and a monochromator. Using such a
pure light, for example, in experiments of x-ray absorp-
tion fine structure (XAFS) and x-ray diffraction, we can
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detect a faint signal, which used to be buried in higher
harmonic noises and also fluorescence ones.

Contrary to the conventional undulator, which gener-
ates a regular array of spectral peaks or harmonics, the
QPU radiation never has such regularity but generates
spectral peaks with irrationally factored energies. Any
one of the spectral peaks can be selected with a conven-
tional crystal monochromator as the purely single energy
radiation without being contaminated with a mixture of
harmonics.

Here we analytically formulate the QPU radiation
spectrum in order to investigate what kinds of param-
eters are important for designing the optimum structure
of quasiperiodic magnet array. We will have convenient
equations to get the positions of spectral peaks and their
peak intensity for a given array of magnets.

In the far field approximation the radiated intensity
per electron per unit solid angle d2 per unit frequency
interval dw is given by (3]

d?’I(w)  e?
dwdQ ~ 16m3¢gc

[ atx B(t)] %8 ()}
e~ [-d-AP

weiwlt — - 7(t)/c]|

(1)

where e, €y and c are universal constants. The vector
ﬁ(t) is the velocity of the electron divided by ¢, 7(t) the
position, and 7 the unit vector oriented to the observa-
tion direction. In the case of a usual periodic undulator
(PU) with N periods, this formula can be rewritten as a
product of the integral over one period (form factor) and
a function that reveals the interference with NV successive
magnetic periods (structure factor) [4-6], that is,
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where w; is the observed dipole frequency given by

2me

~ Ay (1= B*cosbo)’ (3)

w1

with 8* the average longitudinal velocity, 6y the angle be-
tween the observation direction and the undulator axis,
and Ay the period of the undulator. In Eq. (2) Ty is the
time that the electron takes to traverse one undulator
period Ay. The standard analysis of Eq. (2) yields the
well-known formula expressed by infinite series of Bessel
functions [7-9]. The structure factor causes the radiation
spectrum with a series of harmonic frequencies w = fw, (£
= integer). Since in a QPU the phase differences among
the integrations over the individual magnet blocks are
quasiperiodic, the structure factor gives rise to an irra-
tional property in the spectrum. In the following section
we derive an explicit expression for the radiation spec-
trum from a QPU.

II. SPECTRUM FOR A QUASIPERIODIC
UNDULATOR

The mth quasiperiodic lattice point is represented as
[1,2,10]

t
Z2n=m — (tana — 1) + (tana — 1) [___an_a_m+1} ,

1+ tana
(4)

where tan a is the tangent of the inclination angle of a
one-dimensional (1D) quasilattice against a 2D square
lattice. The symbol | ] represents the greatest integer
operator. The first term on the right-hand side in Eq.
(4) corresponds to a periodic component of spacing be-
tween the lattice points, the second term represents the
constant translation of lattice points, which moves the
initial lattice point 2y to the origin, and as m is increased
the third term quasiperiodically increases by (tana — 1)
due to the irrational nature of tan a. Hence the distance
between any two consecutive positions (2, — Z,,—1) takes
a value of 1 or tan a, forming a quasiperiodic array.

A basic magnetic structure for the planer QPU can be
realized by aligning positive and negative magnet poles
alternately at the 1D quasilattice points designated by
Eq. (4) [1,2]. From the symmetry of the 2D square lattice,
where a 1D quasilattice is embedded, we can restrict 0 <
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tana < 1 without loss of generality. Thus we denote
the two distances between the quasilattice points as d,
d'(= d/tana > d). To realize a QPU, the length of the
magnet block w should be shorter than the distance d.
The alignment of the magnet poles in the case of w = d
is shown in Fig. 1.

As in a regular PU we assume here that the magnetic
field B, (z) of the transverse QPU with N’ poles has the
sinusoidal dependence

N'—1

By(z) = Z_: Bo (—=1)™ cos [% (z — zm)] , (5)

where By is the peak magnetic field and z,,, (= d'2,,) the
center of the mth magnet region. The function cos(a) is
defined here to take cos(a) for —7/2 < a < 7/2 and 0
otherwise. The magnetic field distribution with w = d is
shown in Fig. 2.

Since the electron is accelerated only in the magnet
regions, the integral in Eq. (1), being a kind of radiation
amplitude, is reduced to the summation of the integrals
over the magnet poles

P N'—1 tm+T°/2d 7 X {[ﬁ-— ﬁ(t)] XE (t)}
= t
o /tm—To/z [1 —7- B‘(t)]2

X exp [iw (t - "—“))] , (6)

where t,,, is the time when the electron arrives at the cen-
ter of the mth magnet region z,, and T the time that the
electron takes to pass through a magnet pole. Here we de-
velop the exponent of the phase factor iw [t — 7 - 7(t)/c].
Integrating the Lorentz equation with the undulator
magnetic field (5), we can write the transverse velocity
as

m=

N'-1
Bz(t) = % [ II {—sen(z — zm)}

N'—1

= 2 ()™ sinlko(z — 2]

—sgnfko(z — zm)]}] ) (7)

FIG. 1. Magnetic alignments of (a) a periodic undulator
and (b) a quasiperiodic undulator, respectively. The hatched
boxes denote magnet blocks and the blank boxes correspond
to spacers.
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FIG. 2. Magnetic field distribution along the axis of the
quasiperiodic undulator. Here By denotes the peak field of the
magnet block and d the length. We assume that the magnetic
field in the magnet region is sinusoidal and that there is no
magnetic field in spacer region.

where sin(a) is the counterpart of cos(a), i.e., it takes
sin(a) for —7/2 < a < w/2 and 0 otherwise. The signa-
ture function sgn(z) is

sgn(x) = { 1—1 for

<0
for z>0 (8)

and sgn(a) is equal to sgn(a) for —7/2 < a < 7/2 and 0
otherwise as well. For the sake of simplicity, we used the
analog of the wave number ko = m/w and the undulation
parameter K = (eBg)/(mocko) in the QPU. The initial
transverse velocity is set to be K/v, at which the electron
runs along the undulator axis. For a highly relativistic
electron, v is very large and hence (3, is very small, so
that we can approximate the longitudinal velocity z(t) as

W _p [1 - %ﬂﬁ(t)] - (9)

Then, integrating the above equation with inserting
Eq. (7) into it, we obtain the longitudinal position z(t)

up to the order v~2 as

2(t) _ (1_1+K2/2)t

2~2
+ﬁ (%)zsin [2wo (£ — tm)]
_% (%)2 (tm — mTo) (10)

for t,, — To/2 < t < tm + To/2. Here wo = cko is the
angular frequency of the QPU. The third term on the
right-hand side represents the contribution from the free
spaces between the magnet regions. Replacing the vari-
able t by t' + t,, in order to pull back the center of the
magnet pole to the origin and to factorize out the phase
factor, we have, for t,, — To/2 < t < tm, + To/2 or for
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—T0/2 < t < To/z,

A7t .
w (t — ul) = ii [wot' — e "¢, coswot’
[ w1

—&, sin 2w0t'j| — itk (w) (3, — nm),

(11)
where
2 2
wy = T %o 29 (12)
1+ K?2/2+ (v6o)
ZK’YOO COS¢0
Em = 2 29 (13)
1+ K2/2 4+ (v8o)
KZ
z = 2 (14)
4 [1+K2/2+ (200)°]
and
w
k =m7—
(w) s (15)
w 2v2wq
Wy = o 16
2 d’ 1 +K2 + (790)2 ( )
KZ
n= o (17)

T 2d 1+ K2+ (760)%

Here 6, is the polar angle of the observation direction
with respect to the undulator axis and ¢¢ the azimuthal
angle measured from the undulation plane. Note that
w; is equal to the dipole frequency (3). The term in the
first set of square brackets on the right-hand side of Eq.
(11) describes the temporal motion in the magnet region
and the second term represents the phase difference with
respect to the zeroth magnet. In the case of a PU, the
phase term becomes im(w/w;)m. Hence the summation
of the phase factors yields a structure function containing
the phase interference in Eq. (2).

Next we turn to developing the radiation amplitude
(6). We carry out the integration in Eq. (6) by parts and
get

i Nil{ [ﬁ x [ x B(B)] iwlt - - f‘(t)/c]]tm+T0/2
m=0 1—7- ﬁ(t) tm—To/2
iy /tm+To/2 Gt [ﬁ 9 ﬁ(t)] plw[t — 7t F(t)/c]}
tm—To/2
N'—1 .
=3 [JB(m) + A,(m)] . (18)

In the following we denote the first term in the large curly
brackets, which is called the boundary term, as Ap (m)
and the second term, called the integral term, as A7(m),
respectively. Although the boundary term in the radia-
tion amplitude of a PU vanishes due to a cancellation be-
tween the neighboring magnet poles, the boundary term



52 SPECTRUM FORMULA OF THE SYNCHROTRON RADIATION . ..

in general remains finite since in the QPU the phase ad-
vances while the radiation travels through the free space.
The boundary effect of the mth magnet is then written
as

Ap (m) = 2vetk (@) (Zm—nm) [2i(B790 cos ¢o

—CK, B0y sin ¢, 0) sin (E -“’—)
2 wi

—2e7™™ (C'vB, cos do

—BK, C~0q sin ¢y, 0) cos (Ei)] ) (19)
2 w1

where
B 1+ K2 + (v60)°
= 5 ,
[1 +K? + (’)’90)2] + (2K~60 cos o)
C = 2K~0¢ cos ¢g

0 .
[1 + K2+ (700)2] + (2K 80 cos ¢o)?

We can readily see that the boundary term vanishes due
to the existence of the trigonometric functions if w is an
integer multiple of w; as in the case of a PU. But in the
radiation amplitude of the QPU, w is not an integer mul-
tiple of wy, so that the boundary term give a finite con-
tribution to the radiation intensity. On the other hand,
the mth integral term is written as

Ar(m) = —in 2 etk (@) (Em—nm)
wo
R ] ‘)]
—1,1r£ w
Xg_z_: ™ i
2 \w

X <90 CcOos qSOSl(O)
;K [s(” + S 1)] ,oosin¢os§°),o), (20)
Y

S'ép ) is the infinite series of Bessel functions

(») _ 5 w v
S ’ (wl) a n;w In (gz w1> Tonvtsr (63 wl) - D)

Now we evaluate the summation of the amplitude over

where

the magnet poles Zf:l—_—_ol A (m). Factorizing out the com-
mon phase terms, we have the summation of the phase
factor

1 N'-1 X
Ql(w) — J_V_’ E ez[k(w)(zm—nm)—'rrlm]' (22)

For a PU with N periods this factor is reduced to

2N-1

Qe(w) = 2;7 Z (s (23)
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and then

Qe(w) = G (V=3 (20 o [ﬂN (“"_1 - ()] (24)

e

The insertion of the above equation into the integral (18)
reproduces the radiation formula from a periodic undu-
lator [7-9].

Since for even £ the second term in the exponent in Eq.
(22) is an integer multiple of 277 and then vanishes in the
exponentiation, the summation Q(w) can be simplified
as

N'—1

o 3 e, (25)

which represents the Fourier transform of the quasiperi-
odic lattice except for the additional term nm. Following
the description of the quasicrystal [10], we can derive
the approximated expression of Q¢(w). The quasilattice
point 2, — nm is expressed as

R 1+ tan? o
Zm—mm = | ——4m8M8— — m
m T 1+ tana K

Ql even(k)

tan o
1+ tana

—(tana—l){ m+1}, (26)

where the curly brackets signify the fractional part func-
tion and we have used an identity relation z = [z] + {z}.
It is shown [10] that Eq. (25) vanishes unless k is

tan o )(l-l-tanza_n) (27)

k,, =2
Pa W(p+q1+tana 1+ tana

with integers p and g. The exponent in Eq. (25) is then
rewritten as

tan o
tkpg (2m —mm) = 27i (pm +q [mm + 1] - q)
tan o
; —_— 2
+1qu{1+tanam+1}’ ( 8)
where

Xpq = 2mq — (tana — 1) kpq. (29)

The first term on the right-hand side of Eq. (28) is an
integer multiple of 27r¢ and does not contribute to the
exponentiation. Since tana is chosen to take an irra-
tional number, we can approximate the summation over
m in Eq. (25) by an integral

1 Xpq
Qteven(kpq) = X—/ €xp (zy) dy

o 28in (Xpq/2)
“Xpa/ X, (30)

Thus, for the large N’ approximation, Eq. (25) is written
as
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Qleven(k) = Z ZXP‘I/zMJ (k

Pq/2 - kpq) .

(31)

This implies that bright peaks occur at the discrete val-
ues of k,,’s where X, ’s are small and that intense peak
positions (p, q) should be associated with the Fibonacci
sequence [10]. Hence, in general, there appears no ratio-
nal higher harmonic in the radiation spectrum from the
QPU.

In the case of odd ¢, the summation Q,(w) is reduced
to

N'—1

Z eik(im —nm)—i-/rm’ (32)

m=0

Qeoad(k) = N

which implies that it corresponds to the Fourier trans-
form of the quasilattice with positive and negative mat-
ters, since the additional phase factor exp(—imm) alter-
nately changes the sign as m increasing. Then the peak
position kpq is shifted by the second term of Eq. (32)
from the positions of £ even and given by

tan 1+ tan?«
kpg = |2 — ) - — 7).
Pa [W(p—‘-ql—i—tana) 7r]/(14—tano¢ 77)
(33)

In both the cases the resonant frequency of the syn-
chrotron radiation from the QPU w4 is represented as

k
g = 20, (34)

It is emphasized that the resonant frequency of the radia-
tion from QPU wyq has the extra K dependence through
7 in kpq in addition to through w; while the one from a
PU is a simple integer multiple of w;.

Gathering the above results of the radiation integral,
on account of the § function in Eq. (31) we can derive
the spectrum formula

d’I(w)
dwdQ

elez,yz K 2
16megc ; 0o cos poFpq — —2—qu

+ [760 sin ¢o Fpq| ) e (W), (35)
where for an odd mode
2k SOk, 4
qu — - Pq . Z = £~ Pq _ 7_rC
1+ K /2+(790) godd—(kpq—f)
2

7r ~
l 36
xcos(zkpq>, (36)

Z Stgl)(]:’pq) + Stg_l)(]:’pq)

2k
qu 2
1+ K2/2 + (v90)* o34

—;B} cos (gl::pq)
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and for an even mode
4
F — Pq) _ _B
P +K2/2 + (v60)? léﬂ Z (~pq _ e) .
x sin (;ik,,q) : (38)
G, = 2];1"1 Z S(l)(~17 ) S( Y ( pq)
Pg = 2 2 T [~
1+ K /2 + (700) Leven Py (kpq - Z)
2
8 . ™~
—;C] sin (-ikpq) . (39)
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FIG. 3. Radiation spectra from the quasiperiodic undula-
tor with K = (a) 0.5, (b) 1.0, and (c) 1.5, respectively. The
solid curve indicates the numerically computed spectrum and
the dots the peaks given in the analytical calculation by means
of the present formula.
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In the spectral formula (35) H,q (w/w1) is the structural
function given by

Hyy () = [%?—)] 3 (v —ye). a0

In Eqgs. (36)—(40)
K [1 +K?/2 + (790)2]

kpg = Epg- (41)
Pq w [1 + K? + (790)2] Pq

It is worth emphasizing that the intensity of the even
modes vanishes on axis as seen in the case of the PU.
This is because Gpq, consisting of Sfl Y for even £ and
C, vanishes on axis (§p = 0). Furthermore, note that,

although infinite Bessel series S| ém) for some £ correspond
to one peak in the radiation spectrum of the PU, a peak
intensity of the QPU comes from all the even series or
the odd series.

To confirm the validity of the formula, we compare it
with the radiation spectrum numerically computed with
the magnetic field given in Eq. (5) or shown in Fig. 2.
Figures 3(a)-3(c) show the comparison of the radiation
spectra of the QPU between the numerical and the an-
alytical calculations with K = 0.5, 1.0, and 1.5, respec-
tively. Here we take w = d and tana = 1/4/5. In the
numerical calculation we assume the number of poles to
be 100. The full circles represent the bright peaks of the
spectra designated by the generalized Fibonacci integers.
Thus the analytical formula for the radiation from the
QPU gives the peak position in the spectrum and the
peak intensity.

III. DISCUSSION

We derived the analytical formula of the radiation from
the QPU Eq. (35) under the assumption that the mag-
netic field is given by Eq. (5). The peak positions are
given by a generalized Fibonacci sequence, indicating
that no rational higher harmonic appears in general.

The assumed magnetic field in Eq. (5) may not be re-
alistic. However, the difference from the practical mag-
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netic field produced by a realistic magnetic array locates
only in the magnet free regions where an electron or-
bit is straight. A small magnetic field remains in the
magnet free regions in an actual magnet configuration.
This difference does not cause a significant change in the
spectrum formula because the main contribution to the
radiation comes from the pole centers where the mag-
netic field possesses a large value and the acceleration of
an electron is large.

The summation of the boundary terms in Eq. (18) can
be interpreted as the integrals over the field free spaces
as shown below. Since the velocity in the free space is
constant, rearranging the boundary terms we have

. . R tm4+1—To/2
it x (7 x ﬂ) Jiwlt — 7 - 7(t) /]
17
tm+To/2

tmt+1—To/2 .

=—iw/ dtﬁx(ﬁx,@)
tm+To/2

xew[t — 7 - 7(t)/c], (42)

Hence, in calculating the radiation intensity from the
QPU as in [2], we can use a simplified formula (3]

d?I(w) = e*w?
dwdQ ~ 167m3eqe

woiwlt — - 7(t)/c]

/_oo dt it x [7i x B(2)]

2

(43)

instead of the rather complicated formula (1). Note that
in this formula the integral over the free space gives a
finite contribution since the velocity 5 is finite in the
field free region.
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